trainFunctions
phs.trainFunctions
Classes:
Name | Description |
---|---|
Experts |
Convenience Class for a Mixture of Experts Classifier. |
Ksplit |
Convenience Class k-Split (for k-fold CV). |
Functions:
Name | Description |
---|---|
getTrainedModel |
Train a model using Linear SVM Classifier. |
Experts
dataclass
Convenience Class for a Mixture of Experts Classifier.
Methods:
Name | Description |
---|---|
__get__ |
Predict the class of X based on "opinion" of |
__getitem__ |
Convenience subscript access for experts. |
acc |
Convenience function of naïve accuracy |
Attributes:
Name | Type | Description |
---|---|---|
classes |
list[int]
|
|
experts |
list[dict]
|
|
classes = field(default_factory=lambda: [0, 1])
class-attribute
instance-attribute
experts
instance-attribute
__get__(X)
Predict the class of X based on "opinion" of
experts. Y = self(X)
__getitem__(idx)
Convenience subscript access for experts.
self[i]
is the same as self.experts[i]
acc(X, Y)
Convenience function of naïve accuracy calculator.
acc = np.mean(self(X)==Y)
Ksplit
dataclass
Convenience Class k-Split (for k-fold CV).
Split a dataset with \(N\) samples into \(k\) parts.
Only maintain indices so that ksplit[i]
provides a
set of indices subscriptable to the original dataset,
e.g. iTrain, iVal = ksplit[i]; xTrain = X[iTrain]
creates a train data subset for i
-th fold of
validation.
On initialisation, create a random shuffled set of indices if not already provided.
[i]
subscript access will fetch the i
-th pair of
indices corresponding to train and val split
respectively.
Attributes:
Name | Type | Description |
---|---|---|
N |
int
|
|
indices |
list[int]
|
|
k |
int
|
|
N
instance-attribute
indices = field(default_factory=list)
class-attribute
instance-attribute
k
instance-attribute
getTrainedModel(xTrain, yTrain, xVal, yVal, hparams)
Train a model using Linear SVM Classifier.
hparams
is a dict with key 'C'